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In this study the mechanical properties of dry set plasters are of interest. Shore C hardness of 
different plasters is given as a function of porosity for porosities ranging from 41 to 65 vol %. 
The data, and data collected from literature, show that Young's modulus follows an empirical 
power law for porosities ranging from 26 to 70 vol %. Flexion strengths were measured on 
samples of different sizes and porosities (41.4-65 vol %). As they are size dependent, strength 
variation cannot be correlated to the sole porosity. Finally, analysing the results with Weibull's 
theory led to the proposition of a brittleness scale for plasters. Brittleness increases with 
decreasing porosity. 

1. Introduct ion  
Plaster is one of the earliest building material elab- 
orated by man, the production now being about five 
million tons a year. In the recent past, prefabricated 
materials made great strides, but it is most probable 
that new and still more sophisticated materials will 
appear on the market in the near future. This is the 
reason why studies on plaster are still up to date, as 
crystallization and setting induce properties which can 
be improved by better controlling the experimental 
conditions. On the other hand, these properties can be 
seriously damaged if plaster is set in unfavourable 
environments. One of the most puzzling problems is to 
explain how a small amount of water drastically af- 
fects the mechanical behaviour of the material. 

However, studying the effect of water involves that 
the behaviour of the dry materials is known. There- 
fore, the results are first presented by investigating dry 
set plasters. 

Dry plaster is a linear, elastic and fragile material. 
Its mechanical characteristics are estimated from its 
hardness, elasticity modulus and strength. Hardness 
can be measured with different devices, the results 
being compared to the value of the standard obtained 
with the same device. Not withstanding that hardness 
cannot fully describe the mechanical behaviour of 
plasters, it is very convenient to use it for comparing 
materials produced under different experimental 
conditions. Concerning the modulus of elasticity, 
there are several data in the literature [1-4]. These are 
used for establishing a model linking Young's modu- 
lus to plaster porosity'over a wide range of porosity 
(25-70 vol %). This model is compared to those de- 
scribed in the literature. Hereafter, some results 
concerning the flexion strength of materials exhib- 
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iting different sizes and porosities are presented. 
Strength and rupture probability are discussed using 
Weibull's model. 

2. Experimental procedure 
The samples of set plasters studied were prepared by 
hydration of a hemihydrate powder, CaSO 4 0.5 H/O. 
In most cases hemihydrate 13 was used. Hemihydrate 
was only used for obtaining samples with very small 
porosity (P = 41.4%). Once hemihydrate begins to 
dissolve, it reprecipitates as gypsum, CaSO4 2H/O, 
the solubility of which is smaller [5]. The purity of the 
solid phases is about 96 wt % the impurities brought 
by hemihydrate being calcium carbonate, alumina and 
some alkali oxides. Such a purity is rather good for 
this kind of material. Porosity of the set plasters is 
adjusted by the addition of different amounts of water 
to hemihydrate. Porosity changes from 41 to 65 vol % 
when the ratio water-hemihydrate varies from 50 to 
109 wt %. Porosity is determined from the sample 
mass and volume, taking a volume weight of 
2.32 gcm -a for gypsum. Fig. 1 is a microphotograph 
taken with a scanning electron microscope (SEM) and 
shows the typical morphology of a set plaster of 
porosity 57.7%. As soon as the plaster has set, it is left 
for 24 h at room temperature in an atmosphere of 
100% relative humidity. Then, it is dried in an oven at 
42~C and 20% humidity in order to evaporate the 
excess water trapped in the pores. Even under these 
soft drying conditions, the material obtains the best 
possible hardness [6], and can be tested as soon as its 
mass remains constant. However, this condition is 
never really fulfilled [6] because some water molecules 
are slowly extracted from the crystal structure before 
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or at the end of setting was avoided. A consequence of 
this nOn-compression is that it is impossible to get 
extremely small porosities, less than 25%; but a large 
porosity range wa s investigated above this value, up to 
about 70%. 

Figure 1 Typical aspect of a set plaster (porosity 57.7 vol %) ob- 
served by SEM. Porosity and needle elongation depend on the 
water:hemihydrate ratio used for producing the material. 

Figure 2 Aspect of a set plaster(porosity 57.7 vol %) initially seeded 
with a powder of ground gypsum crYstallites. 

all the water has been removed from the pores. This is 
valid, even under these drying conditions, but does not 
affect the mechanical properties of the material even 
when drying lasts over long periods of time. 

In some cases, a small mass of ground gypsum 
crystals (0.2 wt % with respect to hemihydrate) was 
added to the hemihydrate powder prior to hydration. 
The main effect of this solid additive was to induce 
heterogeneous nucleation, resulting in the formation 
of a larger number of smaller gypsum crystallites 
(Fig. 2). After setting, the properties of the material 
were significantly modified with respect to the stand- 
ard obtained without gypsum seeds. In a few cases, 
sorbitol ( C 6 H t 4 0 6 )  was also used as an additive. It 
was dissolved in water (2 wt %) prior to hemihydrate 
hydration. This additive was selected from several 
others because it slightly improved the mechanical 
characteristics of set plasters, without significantly 
changing either the size or the crystal habit of gypsum 
needles. 

Finally, it is noteworthy that, all plaster samples 
tested issued, after sawing, from a volume of large 
plaster blocks (5 x 25 x 25 cm 3) in order to obtain 
good sample homogeneity and to avoid altering the 
hardness measurements by crystal orientation due to 
surface effects. Compression of the blocks either before 
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3. Hardness of set plasters 
Vickers hardness of several plasters was determined 
by Soroka and Sereda [3], while Brinnel hardness was 
determined by R6bler and Odler [1]. In the former 
case, the drying conditions were 20 ~ and 50% relat- 
ive humidity. In our opinion, these conditions are too 
soft to give to the material the best mechanical proper- 
ties, because residual water in the pores greatly affects 
these properties [6]. In the latter case, the measure- 
ments were performed on plasters dried at 40 ~ Their 
porosity ranged from 34.5 to 57%. 

In this case, hardness was measured on large flat 
surfaces by means of a Zwick device, graduated from 
0 to 100 shore C units. Unit conversion from shore C 
units into kg cm-z has already be given by Amathieu 
and Boistelle [7]. Further conversion into MPa units 
can be made easily by dividing the latter units by ten. 
Here, indentation hardness is dealt with, i.e. the resist- 
ance offered by plaster to the penetration of a needle of 
1.3 mm diameter applied with a force of 50 N. It is 
noteworthy that the measurements must be performed 
rather rapidly once the samples are taken out from the 
oven at 42 ~ As a matter of fact, at 20 ~ and 60% 
humidity, hardness decreases within 20 min by 3 or 4 
shore C units. The situation becomes rapidly worse 
with increasing relative humidity. Furthermore, due to 
the preparation of the plaster paste, there are some 
local inhomogeneities in the samples (large pores, air 
bubbles), so that hardness may drastically change 
from one impact point of the needle to another. 
Consequently, to obtain the proper value of hardness, 
about 100 measurements were performed on several 
samples of the same porosity. If all precautions are 
taken (flatness of the samples, drying conditions, large 
number of measurements), then the standard devi- 
ation is small, as shown in Fig. 3. It is also seen that 
plasters set in the presence of the two impurities 
selected, exhibit a slightly improved hardness. These 
results give the first information on the plaster proper- 
ties. However, the test concerns the surface of the 
sample rather than its core, which is better character- 
ized by the modulus of elasticity and strength. 

4. Elasticity modulus and f lexion 
strength 

The hardness measurements were performed on sev- 
eral hundreds of Samples, and the small standard 
deviations show that set plaster is homogeneous at 
least on the scale of the hardness-meter. If it is as- 
sumed that this homogeneity exists inside the whole 
plaster volume, at least on the scale of a few micro- 
meters, one may hope to describe the mechanical 
properties of the material using Young's modulus and 
strength. 
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Figure 3 Shore C hardness of pure and poisoned plasters produced 
in the presence of ground gypsum seeds (G) and sorbitol (S). 
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Figure 4 Young's modulus of set plasters according to different 
sources in a 25 70 vol % porosity range [1-43, see text. 

4.1.  Elasticity of  d ry  p las ter  
Several measurements of Young's modulus were per- 
formed as a function of plaster porosity [1-4].  The 
data obtained by hydration of = and 13 hemihydrates 
are collected in Fig. 4 for a 25 to 70 vol % porosity 
range. Not  withstanding the different experimental 
methods, compression [3], ultrasonic [1, 4] and three- 
point bending [2], the results are in good agreement, 
with a scattering of about 10%. From the results of the 
three-point bending test (Fig. 5), Young's modulus, E, 
can be calculated [8] from 

E = Erupt L3 
d 4bW 3 (i) 

where d and Frupt are the beam deflection and the 
rupture force, respectively while L, b and W are the 
sample dimensions given in Fig. 5. Unfortunately, 
with this experimental method, there is significant 
variation of Young's modulus with the changing 
dimensions of the samples. At small L: W ratios 
(3 _< L: W_< 5), some shearing of the sample, and 
crushing on the device knife-edges, induce small defor- 
mations which are superimposed on the deformation 
due to the sole elasticity. Keeping only the contribu- 
tion of elasticity yields, the following results for plas- 
ters of 53.5% porosity are obtained 

E = 2.0 GPa  for L: W =  3 

E = 5.3 GPa  for L: W >  16 

E remains constant under the condition that 
L : W > _  16. 

The influence of porosity on Young's modulus has 
already been described with several models for differ- 
ent materials. In two articles devoted to porous alum- 
ina [9] and set plaster [4], Phani makes a review of 
the models linking Young's modulus to porosity, P. 
The models which are commonly used to give linear 
laws are 

E = Eo(1 - ZP) (2) 

or exponential laws 

E = E o exp(--  kP) (3) 

Z 
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Figure 5 Characteristic dimensions of the samples used in the three- 
point bending test (see text). 

where k and k are empirical constants, and E o 
Young's modulus at P = O. In the model proposed by 
Hasselmann [10] there are two adjustable parameters, 
Eo and A, which is another empirical constant 

E = E o 1 - ])P (4) 

For set plasters, Phani [4] proposed the power law 

E = Eo(1 - aP)" (5) 

where a _> 1 is a packing geometry factor, e.g. for 
P = 1/a the solid structure of plaster breaks down. 
The exponent n is dependent on pore and crystal 
geometries. 

Other models have even more adjustable para- 
meters. In Wang's model [11] 

E = E o e x p [ -  K(P)] (6) 

K is a polynomial O f second or higher order. 
In the model of Knudsen [12] elaborated for spher- 

ical ceramics, Young's modulus is written as 

E = EoG-aexp( - bP) (7) 

G being the diameter of the particles, while a and b are 
empirical constants. The results were not fitted with 
the two latest models because they required more than 
two adjustable parameters. 
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Figure 6 Young's modulus of set plasters fitted with (a) a linear law, Equation 2; (b) an exponential law, Equation 3; (c) Hasselman's model, 
Equation 4; (d) a power taw, Equation 5. 

In Fig. 6a-d, the data displayed in Fig. 4 is fitted 
with Equations 2-5, respectively. The correlation fac- 
tor, r 2, is given on each figure. 

The power law best fits the results with E0 
= 27 GPa at zero porosity. This value is higher, by 

about one order of magnitude, than the value ob- 
tained by Williams [13] with the ultrasonic method 
on single crystals along the preferential (0 1 0) cleavage 
plane. In set plasters, the fracture mainly occurs be- 
tween undefined crystal contacts, the interaction 
energies of which are unknown. 

4.2. F lex ion s t rength  
Contrary to the determination of Young's modulus, 
the determination of strength is more dependent on 
the technique which is used. For a plaster with 
P = 57%, the tension strength is 2.1 __ 0.3 MPa, while 
the compression strength is 10 + 1 MPa. The flexion 
strength, measured by means of the three-point flexion 
test [2] is 3.8 _+ 0.3 MPa. As the strength of brittle 
material may be dependent on the volume of the 
sample [14] special attention was paid to this point. 
Measurements of flexion strength (Fig. 5) were per- 
formed with the Hadamel-Lhomargy DY 30 press. At 
the beginning of the study two strain rates were used: 
0.1 and 1 mm min-  1. As no significant difference was 
observed on the mechanical behaviour of the samples, 
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TABLE I Geometry and volume of plaster samples used for 
measuring the flexion strengths given in Table II 

Size Length, Width, Breadth, Volume, 
L (cm) W (cm) b (cm) V (cm 3) 

A 4 1.2 1.5 9 
B 6 1.5 3.0 27 
C 10 1.5 5.0 75 

the remaining experiments were performed at a strain 
rate of 1 mmmin-1.  From the rupture force, Frupt, 
measured with the press, flexion strength, ~, was 
calculated for [8] each sample, from 

3Frupt L 
o - 2b W 2 (8) 

Tables I and II summarize sample geometries and 
mean strengths for each specimen shape and plaster. 
Three conclusions may be drawn from Table II and 
Fig. 7. The first concerns the plaster initially seeded 
with ground gypsum (G) or poisoned with sorbitol (S). 
The mean strength of these samples is significantly 
increased with respect to the strength of pure plaster, 
which confirms the results obtained with hardness 
measurements. The second remark concerns the 
standard deviation of the mean strength, about 



T A B  L E I I F lex ion  s t rengths  (MPa)  of set p las ters  with different porosi t ies ,  P (vol %), where N is the number  of tested samples  

Porosi ty ,  P (vol fraction) 

0.414" 0.525" 0.577" 0.65" 0.573 b 0.573 c 

Size A Fo r  N = 20 For  N = 21 For  N = 40 For  N = 31 Fo r  N = 40 For  N = 37 
8.79 5.81 4.50 2.94 5.44 5.48 

+ 0.91 + 0.79 +__'0.66 + 0.32 4- 0.62 4- 0.78 

Size B For  N = 15 For  N = 30 For  N = 28 For  N = 26 For  N = 16 Fo r  N = 18 
7.35 4.93 3,85 2.81 4.32 4.38 

_ 0.89 4- 0.71 + 0.44 + 0.28 _ 0.52 -t- 0.92 

Size C Fo r  N = 15 For  N = 14 For  N = 14 Fo r  N = 14 For  N = 14 For  N = 14 
6.81 4.07 3.65 2.44 3,89 3.85 

+ 0.79 + 0.49 4- 0.38 + 0.18 _ 0.42 -I- 0.58 

a Measu remen t s  m a d e  on pure  plasters.  
b Plas ters  seeded wi th  gypsum crystal l i tes  (G). 

c P las ters  po i soned  wi th  sorbi to l  (S). 
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Figure 7 Flex ion  s t rengths  of set p las ters  versus poros i ty  for sample  
sizes A and  C in Table  I (G = gypsum; S = sorbitol).  

10-15%, which seems to be independent of the num- 
ber of tested samples and the mean value of the stress. 
From additional measurements on plaster samples of 
the same porosity (P = 57%) and dimensions (L x b 
x W) = (6 x 3 x 1.5 cm 3) but issued from two different 
blocks 

o = 3.77 _ 0.35 MPa (70 samples) 

= 3.81 _ 0.47 MPa (84 samples) 

The standard deviation of the experimental points is 
still about 10% or more. The third conclusion is that 
the mean strength is dependent on the size of the 
sample with a clear correlation observable between 
sample volume and strength. Within the size range we 
have investigated, the size effect is very significant: for 
a porosity of 52.5%, the mean strength varies by 30% 
between samples A and C. Accordingly, it is concluded 
that the strength does not properly characterize the 
mechanical properties of plaster. This has already 
been observed on other materials [14]. The hypothesis 
that the plaster is homogeneous throughout the bulk, 
is therefore not grounded. To describe strength vari- 
ations, it is necessary to consider theories which take 
heterogeneity into account. 

5. D i s c u s s i o n  
Weibull proposed a model for explaining the import- 
ant scattering of the mean rupture strength values and 
their variations with sample size. In doing this, he 
started from some observations partially drawn from 
the work by Orowan [15], who suggested that the 
theoretical strength, oth, and the surface energy, Ys, of 
the sample are correlated by the equation 

CYth ' m  (Eys/2d) 1/2 (9) 

in the case of a monocrystalline, cubic and perfect 
material. Under these conditions, 3% is the surface 
energy of the cleavage plane created by the rupture 
and d the cell parameter normal to this plane. 
Applying this formula to calcite, with Gilman's data 
[16], it was found [6] that 

cyth = 7.37 x 104MPa 

Comparison of this value with the experimental data 
is rather disappointing, since tension strengths meas- 
ured on limestone samples are about 35.2 MPa [17]. 
The difference is about three orders of magnitude, and 
Orowan [15] concluded that defects, grain bound- 
aries, microcracks, dislocations and pores induce 
stress concentrations which may lead to material rup- 
ture long before ~,h is reached. 

In addition, the strengths of plastic materials are 
tess scattered than those of brittle materials. In metals, 
this is the consequence of the presence of large num- 
bers of linear defects (dislocations), about 1 x 105 to 
1 x 107 cmcm -3 [18]. Once the elastic limit of the 
material is locally exceeded, many dislocations form 
and move in order to relax the local stress. Measure- 
ment of strength can therefore give a good image of 
the entire material properties, which is not the case for 
brittle materials, in the latter case there are far less 
dislocations (10_~ 1 x 10 3 cm cm -3) which, moreover, 
cannot move and relax the local stress. Rupture arises 
in the vicinity of the defect which has the highest stress 
concentration. It is noteworthy that in the case of 
plaster for instance, some defects pre-exist in the solid 
structure (pores, microcracks, etc.), defects which fav- 
our rupture when the material undergoes some stress. 
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Brittle fracture is a local phenomenon which happens 
in a frozen system. Consequently, strengths are more 
representative of a few defects inside the material than 
of the material itself. 

According to Weibull [19] the defect distribution 
accounts for the distribution of the strengths of fragile 
materials. The model, named model of the weakest 
bond, is grounded on the following hypotheses: 

1. the number of defects is large; 
2. the material is isotropic and the probability of 

finding a critical defect is constant inside the bulk; and 
3. the rupture of the weakest bond leads to the ruin 

of the material. 
Accordingly, the material is no more considered as 

homogeneous: it contains singular points without 
interactions and is dispersed in a perfectly homogene- 
ous matrix. 

For a sample of volume, V, undergoing a uniform 
stress, or, the distribution function of Weibull [19] is 

Pf = 1 - e x p [ -  V(-Cr-~CYu']"q (10, 
~o / J 

where Pf is the cumulated rupture probability corres- 
ponding to the flexion stress or; % is a strength 
threshold, which is zero for a brittle material such 
as plaster; ~o = 1 is a normalization factor; m is 
Weibull's modulus, an empirical parameter which de- 
creases with increasing fragility. It ranges from 10 to 
30 for ceramics and from 50 to 100 for metals. 

Fig. 8 displays the variation of the cumulative 
rupture probability versus the strengths of 57.7% 
porosity plaster samples, the samples having the 
dimensions given in Table I. To obtain Weibull's 
moduli, m, a linear regression on the data displayed in 
Fig. 8 is made 

ln[ln(1 _ l p r ) ]  = mlncy + l n V  (11) 

Fig. 9 shows the fits obtained with this plaster. The 
data for all plasters studied are collected in Table III: 
the m values are given for each sample size, A, B and C. 
The number of tested samples is indicated in Table II. 

From the correlation coefficients found by linear 
regression, it can safely be concluded that plaster 
enters in the framework of Weibull's model. Weibull's 

modulus decreases with decreasing porosity. Plasters 
exhibiting smaller porosities become harder, but more 
brittle. In the same way, the additives used, known 
for increasing the strength of the material, induce a 
decrease of Weibull's modulus and an increase of 
brittleness. 
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Figure 8 Cumulative rupture probability versus flexion strength for 
samples A, B and C of a 57.7 vol % porosity plaster. 
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Figure 9 Data of Fig. 8 fitted to Weibull's model, and correspond- 
ing Weibull's moduli, m, for a 57.7 vol % porosity plaster. 

T A B L E  I I I  Weibull's moduli, m, for set plasters of sizes A, B and C (Table I). The coefficients of linear regression are given in brackets, The 
number  of tested samples is given in Table II 

Porosity, P (vol fraction) 

0.414 a 0.525 ~ 0.577 a 0.65" 0.573 b 0.573 c 

m (A) 8.10 7.10 10.40 9.10 7.95 
(0.97) (0.99) (0.91) (0.96) (0.98) 

m (B) 8.30 7.13 9.50 9.03 8.60 5.05 
(0.95) (0.96) (0.97) (0.99) (0.99) (0.98) 

,n (C) 8.00 8.30 10.20 13.30 9.35 6.50 
(0.97) (0.92) (0.96) (0.96) (0.96) (0.97) 

a Measurements made on pure plasters. 
b Plasters seeded with gypsum crystallites (G). 
c Plasters poisoned with sorbitol (S). 
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T A B L E  IV Weibull's moduli, m, calculated with Equation 11 

Porosity, P (vol fraction) 

0.525 a 0.577 a 0.65 a 0.573 b 0.573 c 

m (A, B) 6.6"] 7.04 - 4.76 4.90 
m (B, C) 5.30 - 7.13 9.79 7.95 
m (A, C) 5.93 10.12 11.33 6.33 6.01 

Measurements made on pure plasters. 
b Plasters seeded with gypsum (G). 

Plasters poisoned with sorbitol (S). 

Finally, it must also be pointed out that the hypo- 
thesis that the rupture of the weakest bond leads to the 
breakdown of the material implies a dependence of 
the mean strength on the sample volume: the larger 
the volume is, the higher the probability of finding 
a critical defect, and the smaller the resistance of the 
material. If cy i and crj are the average values of samples 
of volumes V~ and V~, Weibull's formula leads to 

~ i f ~ j  = ( v / v , )  1/"'J (12) 

where the ij pairs correspond to pairs AB, AC and BC. 
This equation was used to calculate Weibull's moduli 
of the three sample sizes tested. The results are given in 
Table IV, and can be compared to that obtained from 
the probability distribution given in Table III. In most 
cases the agreement is good, which means that the 
approach of Weibull describes pretty well the brittle- 
ness of plaster. The differences observed between some 
values is to be attributed, in the authors' opinion, to 
the fact that the number of measurements on some 
samples is not large enough. 

6. Conclusions 
In the present work, the effect of porosity on indenta- 
tion hardness, modulus of elasticity and flexion 
strength was studied. Hardness rapidly increases with 
decreasing porosity, while an empirical power law 
links Young's modulus to porosity in the 25-70% 
porosity range investigated 

E = 27 (1 - 1.15P) T M  MPa (13) 

Mean flexion strength could not be described with 
such a law, as an important size effect was observed. 
Small samples systematically exhibit a higher mean 
strength than larger samples. In addition, the rather 
large standard deviation on the value of Young's 
modulus was also found on the measurements of 
flexion strengths. Accordingly, it can be concluded 

that both these parameters are probably not the best 
ones for describing the brittle fracture of dry plaster. 

Therefore, interpretation of the large standard devi- 
ation of the flexion strength values by means of 
Weibull's theory was attempted. It turned out that the 
mechanical behaviour of dry plaster can be described 
by this model. With a modulus less than 10, dry 
plaster may be considered as a very brittle solid. 
Brittleness increases, while Weibull's modulus de- 
creases, with decreasing porosity. 

As the model supposes, the presence of defects 
homogeneously distributed in the bulk, it was decided 
to extend the present study by investigating the mech- 
anical behaviour of plaster, using linear elastic frac- 
ture mechanisms. This work is in progress. 
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